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Summary. On the basis of the deformable body model and harmonic potential 
approximation a nonlinear quantum-mechanical Hamiltonian describing ro- 
vibrational states of diatomic molecules has been derived. The obtained formula 
is applied in evaluation of molecular constants and for prediction of rovibra- 
tional and rotational spectra of the selected two-atomic systems giving quite 
satisfactory reproduction of the data values using only two molecular and one 
semiempirical parameters. This additional parameter is responsible for the 
change of curvature of internuclear potential in the excited rotational states, and 
may be viewed as an indicator of molecular susceptibility to rotation induced 
dissociation of a molecule. 
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I Introduction 

A two-atomic molecule is a simple example of the many body problem and it is 
the reason why it has been subject to extensive theoretical as well as experimental 
studies. The Born-Oppenheimer approximation divided the major problem into 
two parts, namely, the electronic part where electronic energy is calculated, and 
the rovibrational one where internal motion of the nuclei of a molecule is 
investigated. 

The first part of the problem has been examined by ab initio calculations (see 
for example [1-5] and references cited therein), which explain the UV and visible 
spectra of diatomic molecules as well as some other physical properties such as 
polarizabilities [6], magnetizability [7] and so forth. 

The second part, namely, the rovibrational states has been studied mostly by 
semiempirical methods (see for example [8-10]), and a few approaches have 
been proposed for assignment of the experimentally detected bands. The most 
popular are: 

- The Dunham expansion method [11-13] where the rovibrational energy is 
expanded in a series of vibrational and rotational quantum numbers. This 
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method, however, has two main disadvantages, namely, the power series has a 
poor convergency (sometimes it is necessary to use up to a dozen parameters, 
and, what is the most important, it cannot provide any information about the 
wavefunctions of individual states of a molecule, so matrix elements of various 
quantum-mechanical operators, the Franck-Condon factors and transitions 
intensities, cannot be directly calculated. 

- The potential approach which introduces a semiempirical potential [14-18] to 
the rovibrational Hamiltonian, and the unknown parameters are to be obtained 
by a fit to experimental energy levels [16-25]. In contrast to the Dunham 
proposal, the above method provides the wavefunctions which are the solutions 
of the Schr6dinger equation with a suitable internuclear potential. 

The main question which arises from the above discussion is whether there 
exists a physically well-established model which is able to predict rovibrational 
transitions or justifies the expansion applied for assignment of the band ob- 
served, providing also the wavefunction of individual states of a molecule. A 
certain answer to the question brought up above has been obtained from the soft 
body model [26, 27], and the deformable body model [28] which lead to the same 
form of the rovibrational energy as that proposed by Watson [25], and ensure 
simultaneously a clear physical interpretation of all the terms obtained. The 
molecular models mentioned above are based on the assumption that positions 
of atoms in a molecule depend on the momentum and angular momentum as an 
effect of the deformational influence of the Coriolis and centrifugal forces acting 
in the rovibrational systems. Taking into account the above assumption and 
harmonic potential approximation, the nonlinear (in the quantum-mechanical 
sense) Hamiltonian was derived [28], which has not as yet been used in the 
rovibrational spectroscopy. 

In view of the above, the main purpose of this paper is to employ the 
deformable body model and the nonlinear quantum-mechanical Hamiltonian in 
description of rovibrational and rotational spectra of the selected diatomic 
molecules. In particular it will be shown that two molecular and one semiempir- 
ical parameters are sufficient to obtain satisfactory reproduction of molecular 
spectra in a wide range of rotational states. The additional parameter may be 
applied as an indicator of molecular susceptibility to rotation induced dissocia- 
tion of a molecule. 

2 Nonlinear Hamiltonian of a two-atom system 

The application of the deformable body model in description of rovibrational 
systems leads to the nonlinear [28] (in the quantum-mechanical sense) Hamilto- 
nian: 

, T-,16_ h2Tr.0 + =~P Ko 2~qT(B + A)q - ½AT(/~ + A) - 'A, (la) 

,i = {16TKk'16 -- ½h2Trlak }, (lb) 

/i = {16rKLa t 6 - lh2TrIak, }, (lc) 

T r t t = ~ p ~ ,  a = x , y , z ,  (ld) 
o: 

where 16= {J,/~} and J ,p are the operators of the angular and vibrational 
momenta, A and q--= {t/k } are the matrices of force constants and effective 
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normal coordinates, whereas the kinematic matrices Ko 1, K k  1 and KL ~ are 
defined in [28]. 

Let us consider a two-atom system endowed with a reduced mass m, in which 
vibrational displacements are described by the coordinate q canonically coupled 
with the vibrational momentum p. Employing the Taylor expansion of the 
reciprocal inertia tensor about the equilibrium distance q0: 

[m(q0 + q)2] = (mq~) -1 _ 2(mq~) - lq  + 3(mqo 4) - l q 2  . . . .  , (2) 

Hamiltonian (la)  for a two-atom system reduces to the simple form: 
j2 

/_)=l  -1^ + ½(/~ + 2)r/2 + 2(mq0 ) - ~ (/~ + 2) ' gm p 1 2-la~2 1 (3a) 

,~ = _2(mq3)-1~2, /~ = 3(mq 4) - tar2, (3b,c) 

and substitution of the explicit form of operators .3 = - i h  0/~/1 [28], A and /~ 
yields: 

/ ~ =  _ h  2 1 0 2 2--m &/---5 + ½213(mq 42) - 1 j +  1]/12 + ½(mq2) 1j2 

1 2 6 - -1~4 4 -- l  j 2  - $ ( m  qo2) J [3(mqo2) + 1] -~ (4) 

In order to solve the Schrrdinger equation with nonlinear operator (3a) we 
propose the procedure which involves the following steps: 

(i) Calculation of the "matrix" element (v, JI/~ + 2 Iv, J )  in the base of har- 
monic oscillator and rigid rotor wavefunctions of the two-atom system. 

(ii) Replacement of the nonlinear term (B + 2)-1 in the Hamiltonian by the 
"matrix" element calculated in (i). 

(iii) Averaging of the linear Hamiltonian over rotational states, in the base of 
rotational wavefunctions of diatomic molecules. 

(iv) Solution of the vibrational Schrrdinger equation by using the standard 
methods of quantum mechanics. 

Having performed the above operations we arrive at the Schr6dinger equation 
for harmonic oscillator, which can be directly solved: 

_h2 1 0 2 
2~  0/1 ~ ÷ ½211 + CJ(J  + 1)]/12 + BJ(J  + 1) 

D j 2 ( j  + 1) 2 
1 + CJ(J  + 1) E~j I ffvJ(q) = 0, (5a) 

DJ2(J + 1) 2 
E~: = o[1 + CJ(J + 1)] 1/2(/) ÷ 1/2) + aJ(J + 1) (5b) 

1 + CJ(J  + 1)' 
09 = h(2m - 1) 1/2, 

C = 3h2(m2q 4) -~, 

Ors = N~s e x p [ -  1/27(J)/12)]H~j[7(J)1/2/1] , 

B = h2(2mq 2) -1, (5c,d) 

D = h4(2meq62)- l .  (5e,f') 

7(J) = mh -~co[ 1 + CJ(J  + 1)] ~/2, 

(5g,h) 

where H~s[7(J ) 1/2q] is Hermite polynomial in 7(J)1/2/]. 
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The obtained results indicate that: 

(i) The rovibrational energy of diatomic systems consists of an effective vibra- 
tional energy described by the first term in Eq. (5b), and an effective rotational 
energy given by the two last ones. 

(ii) In the zero order approximation, considering a molecule as a rigid rotor 
(2 = oe), the effective rotational energy reduces to the well-known formula 
Ej = BJ(J + 1). 

(iii) For a small value of the constant C, the effective vibration and rotation 
energy can be expanded in a power series of J(J + 1), leading to the polynomial 
Dunham expansion [11] of the rovibrationa! energy of diatomic systems. In view 
of the above, the Dunham formula is a particular case of the general one given 
by the analytical expression of Eq. (5b). 

(iv) The continued fraction formula of Eq. (5b) is a more general and stronger 
physically supported equation describing the rovibrational energy of two-atoms 
system, than the Dunham proposal. 

The last point suggests the possibility of making some generalization of the 
formula obtained. Namely, instead of Eq. (5b) we propose to consider its simple 
extension given by the multiparametric continued fraction formula: 

E~j = ~y[1  + CjJ(J + 1)11/2(v + 1/2) + BJ(J + 1) 
Ojj2(j  -Jc- 1) 2 

cs(J  + 1) 
xJ(J + 1) 

1 +  
yJ(J  q- 1) 

1 + - -  
1 + - . .  

xJ(J  + 1) D 
OOg = 6o I + yJ(J  + 1)' Ds - xJ(J  + 1) ' 

1 + yJ(J  + 1) 1 +  1 + . . .  1 +  

l + . . -  
C 

(6a) 

Cj - , (6b,c,d) 
xJ(J  + 1) 

1 +  
1 + yJ(S + 1) 

1 + . . .  
associated with the modified wavefunction: 

O~s =N~jexp[-1/27jt12]H,j(Ty2rl), 7s=rnh 1cos[1 + CjJ(J-[- 1)] 1/2. (7a,b) 

Now, Eq. (6a) depends on two molecular parameters {qo, 2} i.e. equilibrium 
distance and force constant, respectively, as well as the set of additional 
semiempirical parameters {x, y . . . .  }, to be obtained by the fitting procedure. 

The rovibratiOnal transitions v ~ v + 1, J ~ J + 1 can be calculated from the 
equation: 

AE~s = cog+ 111 + Cs+ l(J + 1)(J + 2)11/2(v + 3/2) 

- COs[1 + CjJ(J  + 1)] m(v + 1/2) + 2B(J + 1) 
D j + I ( J +  1)2(J + 2) 2 Djj2( j+ 1) 2 

+ (8) 
1+Cj+l(JW1)(J+2 ) 1 + C j J ( J + I ) '  
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whereas, the rotational energy in the vibrational state v and the energy of 
rotational transitions are described by the equations: 

Dsj2(j + 1) 2 
E~s = cos[1 + CsJ(J + 1)] 1/2(/2 + 1/2) + BJ(J-t- l) -Evo, (9a) 

1 + C:J(J + 1) 

Evo = m(v + 1/2), (9b) 

AEvs = CoS+l [1 + C:+, (J + 1)(Y + 2)] 1/2(v + 1/2) 

-co:[1 + CsJ(J + 1)] ~/2(v + 1/2)2B(J + 1) 

D:+1(J+ 1)2(J + 2) 2 DsJa(J--} - 1) 2 
+ (9c) 

- l + C s + ~ ( J + l ) ( J + 2 )  1 + C s J ( J +  1)' 

where E~o is the vibrational energy in the rotational state J = 0, and quantities 
~oj, Cj, D: are defined by Eq. (6b-d). 

3 Applications 

The obtained formulae will be applied to evaluate the molecular and semiempir- 
ical parameters {qo, 2, x,y,z}, by fitting the experimental frequency values, 
which next will be used in calculation of rovibrational and rotational transitions 
of the selected diatomic molecules in the ~Z electronic state. The best values for 
the molecular parameters will be determined by the linear least-square routine in 
which the statistical weights, proportional to the inverse of experimental uncer- 
tainties, are taken as being equal to one. The calculated frequencies and the 
derived parameters are given with their sigma standard errors at the lower part 
of the tables and in parentheses, respectively. Moreover, the calculated frequen- 
cies are compared with those obtained applying the Dunham formula including 
comparable, amount of fitted parameters. The results obtained are shown in 
Tables 1-3. Tables 1 and 2 present the observed minus calculated frequencies of 
rovibrational transitions (in cm -a) for the R(J) band of 12C180, 13C160, and 
HSlBr, Dy9Br, whereas in Table 3 the results of calculations of rotational 
transitions (in MHz) for H35C1 and H37C1, molecules are collected. Tables 4 and 
5 show the molecular and the Dunham parameters obtained by the fitting 
procedure and used in the assignment of molecular spectra as well as in 
derivation of the standard parameters, such as frequency of pure vibrational 
transitions c~, rotational constant B and centrifugal distortion constant D, 
defined by Eqs. (5c,d,f). 

4 Conclusions 

The application of the deformable body model and harmonic potential approxi- 
mation has lead to the nonlinear Hamiltonian describing rovibrational states of 
a diatomic molecule. The proposed nonlinear Schr6dinger equation can be 
strictly solved giving the exact analytic wavefunctions and eigenvalues reproduc- 
ing quite well rovibrational and rotational transitions in wide range of rotational 
states. However, the accuracy of the calculations diminishes for molecules with 
high deformational susceptibility (HC1, HBr, DBr), i.e. for the systems which are 
characterized by a low value of the force constant and high amplitudes of 
vibrations. It is a consequence of using the harmonic potential and parabolic 
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Table 1. Energy of rovibrational transitions A E  = Eexp ~ - Etheo r of CO molecule (in cm 1) for R ( J )  

band, v = 0 ~ 1 

12C18 0 13C16 0 

J A E  b A E  e A E  a A E  b A E  c A E  a 

0 -3.1417 -0.0071 0.0229 -4.9876 -0.0153 0.0488 
1 -2.5019 -0.0041 0.0137 -4.1836 -0.0101 0.0332 
2 -1.9069 -0.0012 0.0065 -3.4275 -0.0044 0.0206 
3 - 1 .3583 -0.0001 -0.0006 -2.7099 -0.0032 0.0061 
4 -0.8543 0.0011 -0.0058 -2.0396 -0.0008 -0.0046 
5 -0.3952 0.0022 -0.0093 - 1.4118 0.0026 -0.0118 
6 0.0180 0.0024 -0.0123 -0.8292 0.0046 -0.0183 
7 0.3812 0.0035 -0.0128 -0.2908 0.0061 -0,0231 
8 0.7116 0.0048 -0.0119 
9 0.9878 0.0031 -0.0130 -0.6524 0.0076 -0.0284 

10 1.2205 0.0031 -0,0114 1.0577 0.0081 -0.0288 
11 1.4084 0.0036 -0,0086 1.4177 0.0075 -0.0288 
12 1.5488 0.0020 -0,0072 1.7379 0.0114 -0.0230 
13 1.6465 0.0032 -0,0026 2.0058 0.0075 -0.0238 
14 1.6955 0.0013 -0,0008 2.2329 0.0073 -0.0199 
15 1.7000 0.0005 0.0023 2.4144 0.0060 -0.0162 
16 1.6582 -0.0009 0.0047 2.5533 0.0070 -0.0095 
17 1,5714 -0.0012 0.0079 2.6423 0.0029 -0.0076 
18 1.4371 -0.0032 0.0092 2.6899 0.0023 -0.0017 
19 1.2562 -0.0057 0.0094 2.6920 0.0012 0.0038 
20 1.0332 -0.0041 0.0129 2.6471 -0.0017 0.0075 
21 0.7630 -0.0034 0.0145 2.5580 -0.0037 0.0119 
22 0.4434 -0.0056 0.0122 2.4244 -0.0042 0.0174 
23 0.0797 -0.0054 0.0109 2.2450 -0.0051 0.0218 
24 2.0191 -0.0070 0.0245 
25 -0.7852 -0.0026 0.0063 
26 -1.2861 0.0007 0.0031 1.4302 -0.0100 0.0275 
27 -1.8378 0.0002 -0.0059 1.0682 -0.0100 0.0286 
28 -2.4319 0.0043 -0.0125 0.6582 -0.0118 0.0263 
29 -3.0739 0.0082 -0.0221 0.2045 -0.0108 0.0250 
30 -0.2953 -0.0093 0.0221 
31 -0.8415 -0.0075 0.0174 
32 - 1.4339 -0.0051 0.0108 
33 -2.0747 -0.0039 0.0004 
35 -3.4904 0.0060 -0.0219 
36 -4.2681 0.0123 -0.0366 
37 -5.0885 0.0239 -0.0498 

cr ( cm-  1) 1.6125 0.0039 0.0114 2.5430 0.0088 0.0244 

Eexp from Ref, [29] 
b Etheor from Eq. (5b) 
° Eth~o r from Eq. (6a) including one semiempirical parameter 
a Etheor calculated from Dunham formula Evj = o)(v + 1/2) + J ( J  + 1)[B -- ~(v + 1/2)] 
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Table 2. Energy of rovibrational transitions A E  = Eexp ~ - Eth~o ~ of HBr molecule (in cm-1) for R ( J )  

band, v = 0 ~ 1 

HSIBr D79Br 

J A E  b A E  c A E  d A E  b A E  e A E  f 

0 --34.4011 0.0050 --0.0016 -4.8542 0.0009 0.0806 
1 -26.7908 -0.0004 --0.0023 --3.1064 -0.0205 0.0009 
2 - 19.7276 0.0001 0.0027 - 1.6596 --0.0263 -0.0446 
3 - 13.2282 --0.0032 0.0012 -0.2427 --0.0141 --0.0558 
4 -7.2916 -0.0024 0.0023 0.8850 0.0286 -0.0226 
5 - 1.9304 --0.0037 0.0001 1.7445 0.0343 --0.0152 
6 2.8526 --0.0034 -0.0012 2.3665 0.0355 --0.0034 
7 7.0525 0.0001 0.0004 2.7420 0.0249 0.0027 
8 10.6584 0.0021 0.0005 2.8818 0.0153 0.0130 
9 13.6595 -0.0019 -0.0051 2.7568 -0.0206 -0.0023 

10 16.0638 0.0021 --0.0021 2.4479 0.0002 0.0367 
11 17.8547 0.0038 -0.0007 1.8159 -0.0593 -0.0100 
12 19.0278 0.0048 0.0008 1.0417 -0.0158 0.0376 
13 19.5759 0.0042 0.0014 --0.0538 -0.0462 --0.0005 
14 19.4929 0.0020 0.0010 -1.3098 0.0130 0.0357 
15 18.7755 0.0007 0.0019 --2.8554 0.0354 0.0162 
16 17.4135 -0.0035 -0.0002 --4.6998 0.0147 -0.0690 
17 15.4140 0.0024 0.0074 
19 9.4193 -0.0153 -0.0094 
20 5.4472 -0.0047 -0.0001 
22 --4.5252 --0.0028 0.0014 
23 --10.5248 0.0092 0.0044 
24 --17.2182 0.0035 --0.0029 
25 -24.5934 0.0001 --0.0036 
26 -32.6545 -0.0045 0.0029 

(cm 1) 18.2887 0.0052 0.0036 2.7193 0.0309 0.0394 

a Eexp for HS1Br from Ref. [30], and for D79Br from Ref. [32] 
b Etheor from Eq. (5b) 
° Eth~o r from Eq. (6a) including three semiempirical parameters x, y, z 
a Eth~or calculated from Dunham formula E~,j = co(v + 1/2) + J(J + 1) [B - ~ (v  + 1/2)] - j2(j + 1)2 

[D - f l ( v  + 1/2)] 
e Eth~or from Eq. (6a) including one semiempirical parameter x 
f Etheo ~ calculated from Dunham formula Ev~ = co(v + I/2) + J ( J  + 1)[B -c~(v + 1/2)] 

e x p a n s i o n  o f  the  r ec ip roca l  ine r t i a  t enso r  in d e r i v a t i o n  o f  the  r o v i b r a t i o n a l  
H a m i l t o n i a n ,  wh ich  l imi t  the  a p p l i c a t i o n  o f  the  o b t a i n e d  f o r m u l a  to the  low-  
exc i ted  v i b r a t i o n a l  s tates  (v = 0, 1) o f  molecu les .  

F o r  C O ,  D B r  a n d  HC1 m o l e c u l e s  sa t i s fac to ry  r e p r o d u c t i o n  o f  the  e x p e r i m e n -  
ta l  d a t a  is o b t a i n e d  us ing  on ly  two  m o l e c u l a r  a n d  one  s emiemp i r i c a l  p a r a m e t e r s  
{qo, 2, x} ,  whe rea s  the  s a m e  fo r  H B r  m o l e c u l e  r equ i res  the  set o f  five p a r a m e t e r s  
{qo, 2, x, y, z}. I t  m a y  be  n o t e d  t h a t  a p p l i c a t i o n  o f  the  2nd  (6 th  fo r  H B r )  and  
f o l l o w i n g  semiempi r i ca l  p a r a m e t e r s  lowers  the  a c c u r a c y  o f  ca l cu l a t i ons  ( C O ) ,  o r  
does  n o t  c h a n g e  it  r e m a r k a b l y  ( D B r ,  H B r ,  HC1), so, o n l y  Eq .  (6a)  wh ich  t akes  
in to  a c c o u n t  one  ( t h r ee  fo r  H B r )  a d d i t i o n a l  p a r a m e t e r  seems to  be  a phys ica l ly  
wel l  s u p p o r t e d  e q u a t i o n .  
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Table 3. Energy of  rotational transitions A E  = Eexp a - Etheo r of  HC1 molecule (in MHz) for R ( J )  

band, v = 0 

H35C1 H37C1 

J A E  b A E  o A E  a A E  b A E  ~ A E  d 

0 -30 .906  0.029 0.040 -30 .724  0.022 0.033 
1 -53 .768  -0 .022  -0 .005  -53 .362  0.056 0.072 
2 -61 .663  0.090 0.104 -61.911 -0 .535  - 0 . 5 2 2  
3 -51 .149  -0 .005  -0 .003  -50 .702  0.129 0.132 
4 -22 .434  -0 .057  -0 .068  -22.081 0.159 0.148 
5 18.452 -0 .013  - 0 . 0 3 2  18.523 0.172 0.154 
6 58.317 -0 .066  -0 .078  58.104 0.079 0.067 
7 76.355 0.123 0.131 75.656 -0 .110  -0 .101  
8 41.539 - 0 . 0 4 0  -0 .015  41.134 0.192 - 0 . 1 6 7  
9 -86 .349  -0 .002  -0 .016  -85 .699  -0 .118  0.104 

a (MHz) 60.746 0.036 0.077 60.376 0.248 0.237 

~Eex p from Ref. [31] 
b Etheor from Eq. (5b) 
° Etheo r from (6a) including one semiempirical parameter x 
d Etheor calculated from D u n h a m  formula Eos = m(v + 1/2) + J ( J  + 1)[B - D J ( J  + 1)] 

Table 4. Ground  state molecular parameters f i red to the experimental data 

G qo (A) 2 ( N m  -1) x ~ x 10 5 o9 B D x 10 6 

cm - l  1.6125 1.22648(66) 1863.6(10) 2095.95 1.463561 
12C180 0.0039 1.128795(54) 1856.7880(40) -2 .4643(11)  2092.13 1.837555 
29 b 2117.399 c 1.839113 ° 

cm -1 2.5430 1.3004(80) 1867.0(14) 2101.90 1.389929 
13C160 0.0088 1.129207(84) 1856.7117(80) --2.4643(14) 2096.09 1.843244 
35 2121.439 ° 1.846151 ~ 

cm -1 18.2887 2.062(49) 396.8(21) 2601.09 3.983281 
H81Br 0.0052 1.414143(85) 383.9249(15) --31.325(14) e 2558.5186 8.46836 
25 1.41443 d 2648.975 d 8.46488 d 

cm -1 2.7131 1.663(15) 394.65(57) 1846.74 3.103394 
DV9Br 0.0309 1.41807(57) 391.726(11) - 15.213(45) 1839.89 4.268402 
17 

MHz 60.746 1.290750(35) 475.08(84) 2869.01 10329173 
H35C1 0.069 1.2852807(22) 494.4214(91) -12.0683(48) 2926.82 10.417269 
10 1.27455 d 2990.946 d 10.59341 d 

MHz  1.213 1.584(12) 393.09(32) 1843.08 3.421858 
H37C1 0.248 1.2852809(80) 494.408(32) --12.031(17) 2924.57 10.315950 
10 

5.8512 
5.6703 
5.550 c 

2.4311 
5.7015 
5.5931 c 

37.366 
371,09 
345,7 a 

35.056 
91.890 

535.54 
527.87 
531.94 d 

47.179 
513.88 

a Parameters x, y, z are dimensionless 
b Number  of  experimental data in fit 
° Experimental data from Ref. [29] 
a Experimental data from Ref. [ 10] 
e Remaining semiempirical parameters for HSlBr are y = 6.014(53) x 10 -2, z = --1.984(46) x 10 -4  
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Table 5. Dunham molecular parameters (cm-1) fitted to the experimental data 

333 

a B D H × 10 4 ~ a x 10 2 fl × 10 6 

~2C180 0.0114 1.84659(53) 2092.0871(67) 1.7293(31) 
13C~60 0.0244 1.85766(79) 2095.999(13) 1.7661(38) 
HS~Br 0.0036 8.4628(13) 3.362(43) x 10 -4 2558.5331(44) 2.3147(30) 
D79Br 0.0394 4.3253(46) 1839.735(32) 9.21530(45) 
H35C1 a 0.077 312989.2386(88) 15.83037(16) 4.9240(87) 
H37C1 a 0.237 312519.067(27) 15.78294(49) 4.924(27) 

4.80(29) 

Parameters for H35C1 and H37C1 are calculated in MHz 

The performed calculations indicate that for CO, DBr and H35CI molecules 
multiparametric continued fraction formula of Eq. (6a) reproduces the energy of 
rovibrational and rotational transitions more precisely, than the Dunham expan- 
sion including a comparable number of the fitted parameters. However, in the 
case of the remaining molecules a slight difference in the accuracy of calculations 
is observed, which points to the advantage of the Dunham method. 
A detailed analysis of Eqs. (6a-d) indicates that introduction of the additional 

parameter x is equivalent to the replacement 2-~)~s = 211 + xJ(J+ 1)] in the 
starting Eq. (5b). From the mathematical point of view the force constant 
describes the curvature of the internuclear potential function, whereas physically 
it may be interpreted as a measure of molecular rigidity. As the parameter x is 
negative for all the molecules considered, the molecular rigidity diminishes with 
the quantum number J, leading to the possibility of rotation induced dissociation 
in highly excited rotational states. Table 4 reveals that x diminishes with rigidity 
of a molecule, so the semiempirical parameter x may be considered as an 
indicator of molecular susceptibility to rotational dissociation. 
Infrared and microwave spectra of diatomic molecules provide important 

information on their internal structure and physical properties. The well-resolved 
IR and MW spectra, as well as the structural simplicity of two-atomic systems 
are the reasons why they have become convenient test objects for theoretical 
calculation of molecular parameters and reproduction of molecular spectra. 
Usually a simple analysis of molecular rovibrational spectra has been realized in 
the framework of the potential or the Dunham approach. In the potential 
approach, energy levels are obtained by solving the Schr6dinger equation with 
the interatomic potential expanded in terms of interatomic variables, and the 
potential coefficients are obtained either by a fit to the experimental energy levels 
or, if available, by a fit to a theoretically calculated potential. In the above 
method the solution of the Schr6dinger equation provides the relevant wavefunc- 
tions. In the Dunham approach the rovibrational energy is expanded in terms of 
vibrational and rotational quantum numbers, and unknown semiempirical 
parameters are obtained by a fit to the experimental energy levels. The disadvan- 
tage of the Dunham approach is that a power series describing rovibrational 
energy has a poor convergence, and that Dunham expansion does not provide 
any information about the wavefunction of individual states of a molecule. The 
method developed in this work, which is based on the fraction continued Eq. 
(6a) including a set of external semiempirical parameters, appears to be the third 
method combining the potential and the Dunham approach, thus permitting to 
obtain analytical eigenvalues and eigenfunctions indispensable in a more sophis- 
ticated analysis of molecular spectra, and furthermore, allowing to calculate the 
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matrix elements of quantum-mechanical operators, the Franck-Condon factors 
and transitions intensities, which is not directly possible within the standard 
Dunham approach. 

The proposed method based on the deformable body model and harmonic 
potential can be easily extended [33-34] to include anharmonic potentials, for 
example Kratzer [16] or Simons-Parr-Finlan potential [17-19]. In this case the 
analytic eigenvalues and wavefunctions are obtained by solving the Schr6dinger 
equation and next modified by the expanding dissociation constant into a 
continued fraction of rotational quantum number J. 
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